Model-lite planning: Case-based vs. model-based approaches
نویسندگان
چکیده
منابع مشابه
Model-Lite Case-Based Planning
There is increasing awareness in the planning community that depending on complete models impedes the applicability of planning technology in many real world domains where the burden of specifying complete domain models is too high. In this paper, we consider a novel solution for this challenge that combines generative planning on incomplete domain models with a library of plan cases that are k...
متن کاملmortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولطراحی، ساخت و کنترل model based یک روبات موازی هگزا
توسعه و افزایش تولید صنایع و در پی آن رشد اقتصادی و اجتماعی یک جامعه در قرن جدید، با خودکار کردن روندهای تولید گره خورده است. یکی از اجزای خودکار ساختن صنایع، استفاده از روباتها در چرخه تولید به منظورهای مختلف می¬باشد؛ رنگ پاشی، جابجایی، نصب قطعات و جوشکاری بخش کوچکی از فضایی است که به روباتهای کارا نیازمند است. پس از استفاده فراوان از روباتهای سرال در صنایع و انجام پژوهشهای پایه¬ای بر روی طراح...
CHEF: A Model of Case-Based Planning
Case-based planning is based on the idea that a machine planner should make use of its own past experience in developing new plans, relying on its memories instead of a base of rules. Memories of past successes are accessed and modified to create new plans. Memories of past failures are used to warn the planner of impending problems and memories of past repairs are called upon to tell the plann...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Artificial Intelligence
سال: 2017
ISSN: 0004-3702
DOI: 10.1016/j.artint.2017.01.004